204 research outputs found

    The FDA contribution to Health Data Science

    Get PDF
    This contribution aims at presenting examples of Health Data Science where advanced methods based on Functional Data Analysis are used to bring value to clinical and biological problems

    Network analysis of comorbidity patterns in heart failure patients using administrative data

    Get PDF
    Background: Congestive Heart Failure (HF) is a widespread chronic disease characterized by a very high incidence in elder people. The high mortality and readmission rate of HF strongly depends on the complicated morbidity scenario often characterising it. Methods: Data were retrieved from the healthcare administrative datawarehouse of Lombardy, the most populated regional district in Italy. Network analysis techniques and community detection algorithms are applied to comorbidities registered in hospital discharge papers of HF patients, in 7 cohorts between 2006 and 2012.Results: The relevance network indexes applied to the 7 cohorts identified death, ipertension, arrythmia, renal and pulmonary diseases as the most relevant nodes related to HF, in terms of prevalence and closeness/strenght of the relationship. Moreover, 3 clusters of nodes have been identified in all the cohorts, i.e. those related to cancer, lung diseases and heart/circulation related problems.Conclusions: Network analysis can be a useful tool in epidemiologic framework when relational data are the objective of the investigation, since it allows to visualize and make inference on patterns of association among nodes (here HF comorbidities) by means of both qualitative indexes and clustering techniques

    Learning Signal Representations for EEG Cross-Subject Channel Selection and Trial Classification

    Get PDF
    EEG technology finds applications in several domains. Currently, most EEG systems require subjects to wear several electrodes on the scalp to be effective. However, several channels might include noisy information, redundant signals, induce longer preparation times and increase computational times of any automated system for EEG decoding. One way to reduce the signal-to-noise ratio and improve classification accuracy is to combine channel selection with feature extraction, but EEG signals are known to present high inter-subject variability. In this work we introduce a novel algorithm for subject-independent channel selection of EEG recordings. Considering multi-channel trial recordings as statistical units and the EEG decoding task as the class of reference, the algorithm (i) exploits channel-specific 1D-Convolutional Neural Networks (1D-CNNs) as feature extractors in a supervised fashion to maximize class separability; (ii) it reduces a high dimensional multi-channel trial representation into a unique trial vector by concatenating the channels' embeddings and (iii) recovers the complex inter-channel relationships during channel selection, by exploiting an ensemble of AutoEncoders (AE) to identify from these vectors the most relevant channels to perform classification. After training, the algorithm can be exploited by transferring only the parametrized subgroup of selected channel-specific 1D-CNNs to new signals from new subjects and obtain low-dimensional and highly informative trial vectors to be fed to any classifier

    A general framework for penalized mixed-effects multitask learning with applications on DNA methylation surrogate biomarkers creation

    Get PDF
    Recent evidence highlights the usefulness of DNA methylation (DNAm) biomarkers as surrogates for exposure to risk factors for noncommunicable diseases in epidemiological studies and randomized trials. DNAm variability has been demonstrated to be tightly related to lifestyle behavior and exposure to environmental risk factors, ultimately providing an unbiased proxy of an individual state of health. At present, the creation of DNAm surrogates relies on univariate penalized regression models, with elastic-net regularizer being the gold standard when accomplishing the task. Nonetheless, more advanced modeling procedures are required in the presence of multivariate outcomes with a structured dependence pattern among the study samples. In this work we propose a general framework for mixed-effects multitask learning in presence of high-dimensional predictors to develop a multivariate DNAm biomarker from a multicenter study. A penalized estimation scheme, based on an expectation-maximization algorithm, is devised in which any penalty criteria for fixed-effects models can be conveniently incorporated in the fitting process. We apply the proposed methodology to create novel DNAm surrogate biomarkers for multiple correlated risk factors for cardiovascular diseases and comorbidities. We show that the proposed approach, modeling multiple outcomes together, outperforms state-of-the-art alternatives both in predictive power and biomolecular interpretation of the results

    Scaling Survival Analysis in Healthcare with Federated Survival Forests: A Comparative Study on Heart Failure and Breast Cancer Genomics

    Full text link
    Survival analysis is a fundamental tool in medicine, modeling the time until an event of interest occurs in a population. However, in real-world applications, survival data are often incomplete, censored, distributed, and confidential, especially in healthcare settings where privacy is critical. The scarcity of data can severely limit the scalability of survival models to distributed applications that rely on large data pools. Federated learning is a promising technique that enables machine learning models to be trained on multiple datasets without compromising user privacy, making it particularly well-suited for addressing the challenges of survival data and large-scale survival applications. Despite significant developments in federated learning for classification and regression, many directions remain unexplored in the context of survival analysis. In this work, we propose an extension of the Federated Survival Forest algorithm, called FedSurF++. This federated ensemble method constructs random survival forests in heterogeneous federations. Specifically, we investigate several new tree sampling methods from client forests and compare the results with state-of-the-art survival models based on neural networks. The key advantage of FedSurF++ is its ability to achieve comparable performance to existing methods while requiring only a single communication round to complete. The extensive empirical investigation results in a significant improvement from the algorithmic and privacy preservation perspectives, making the original FedSurF algorithm more efficient, robust, and private. We also present results on two real-world datasets demonstrating the success of FedSurF++ in real-world healthcare studies. Our results underscore the potential of FedSurF++ to improve the scalability and effectiveness of survival analysis in distributed settings while preserving user privacy

    Dynamic treatment effect phenotyping through functional survival analysis

    Full text link
    In recent years, research interest in personalised treatments has been growing. However, treatment effect heterogeneity and possibly time-varying treatment effects are still often overlooked in clinical studies. Statistical tools are needed for the identification of treatment response patterns, taking into account that treatment response is not constant over time. We aim to provide an innovative method to obtain dynamic treatment effect phenotypes on a time-to-event outcome, conditioned on a set of relevant effect modifiers. The proposed method does not require the assumption of proportional hazards for the treatment effect, which is rarely realistic. We propose a spline-based survival neural network, inspired by the Royston-Parmar survival model, to estimate time-varying conditional treatment effects. We then exploit the functional nature of the resulting estimates to apply a functional clustering of the treatment effect curves in order to identify different patterns of treatment effects. The application that motivated this work is the discontinuation of treatment with Mineralocorticoid receptor Antagonists (MRAs) in patients with heart failure, where there is no clear evidence as to which patients it is the safest choice to discontinue treatment and, conversely, when it leads to a higher risk of adverse events. The data come from an electronic health record database. A simulation study was performed to assess the performance of the spline-based neural network and the stability of the treatment response phenotyping procedure. In light of the results, the suggested approach has the potential to support personalized medical choices by assessing unique treatment responses in various medical contexts over a period of time

    Non-parametric frailty Cox models for hierarchical time-to-event data.

    Get PDF
    We propose a novel model for hierarchical time-to-event data, for example, healthcare data in which patients are grouped by their healthcare provider. The most common model for this kind of data is the Cox proportional hazard model, with frailties that are common to patients in the same group and given a parametric distribution. We relax the parametric frailty assumption in this class of models by using a non-parametric discrete distribution. This improves the flexibility of the model by allowing very general frailty distributions and enables the data to be clustered into groups of healthcare providers with a similar frailty. A tailored Expectation-Maximization algorithm is proposed for estimating the model parameters, methods of model selection are compared, and the code is assessed in simulation studies. This model is particularly useful for administrative data in which there are a limited number of covariates available to explain the heterogeneity associated with the risk of the event. We apply the model to a clinical administrative database recording times to hospital readmission, and related covariates, for patients previously admitted once to hospital for heart failure, and we explore latent clustering structures among healthcare providers.MR

    The interplay between privacy failure, recovery and crisis communication management: an integrative review and research agenda

    Get PDF
    Purpose of the paper: To integrate different research streams related to privacy, service recovery and crisis communication management in order to systematize and summarize the existing knowledge on recovery after a privacy failure. It also aims to develop an agenda for future research. Methodology: An integrative literature review assesses and synthesizes previous literature, integrating multiple research streams and proposing a new theoretical framework and research agenda. We identify articles of potential interest in three online databases using keywords, and select those relating to privacy and privacy failure, crisis communication management and service recovery after privacy failure across multiple industries. Findings: Reviewing literature streams on privacy, service recovery and crisis communication management reveals that multiple theories and approaches have been used to focus on this topic. The most widely used are Justice Theory, Attribution Theory and Situational Crisis Communication Theory. The fragmentation of theories and approaches in different research streams reveals the need for a comprehensive overview of the growing complexity of the phenomenon. Key variables explaining how consumers react to service recovery after privacy failure are identified and summarized in a framework. Research limits: Because the number of publications is rising rapidly, quantitative insights require methodologies such as a systematic literature review or a meta-analysis. Practical implications: Findings have implications and offer directions for future academic research. Originality of the paper: This is the first paper that attempts to integrate different research streams in service recovery from privacy failure to develop a theoretical overview on the topic and to attract academic attention on the interplay between privacy failure, recovery and crisis communication management
    • …
    corecore